CHAPTER - 19 REPRESENTING 3-D IN 2-D

EXERCISE 19

Question 1.

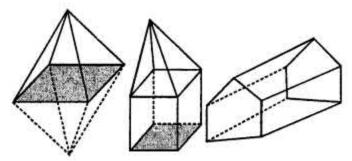
If a polyhedron has 8 faces and 8 vertices, find the number of edges in it. **Solution:**

Faces = 8 Vertices = 8 using Eulers formula, F + V - E = 28 + 8 - E = 2-E = 2 - 16E = 14

Question 2.

If a polyhedron has 10 vertices and 7 faces, find the number of edges in it. **Solution:**

Vertices = 10 Faces = 7 Using Eulers formula, F + V - E = 27 + 10 - E = 2-E = -15E = 15


Question 3.

State, the number of faces, number of vertices and number of edges of:
(i) a pentagonal pyramid
(ii) a hexagonal prism
Solution:
(i) A pentagonal pyramid
Number of faces = 6
Number of vertices = 6
Number of edges = 10

(ii) A hexagonal prism Number of faces = 8 Number of vertices = 12 Number of edges = 18

Question 4.

Verily Euler's formula for the following three dimensional figures:

Solution:

(i) Number of vertices = 6 Number of faces = 8 Number of edges = 12 Using Euler formula, F + V - E = 28 + 6 - 12 = 22 = 2 Hence proved.

(ii) Number of vertices = 9 Number of faces = 8 Number of edges = 15 Using, Euler's formula, F + V - E = 29 + 8 - 15 = 2 2 = 2 Hence proved.

(iii) Number of vertices = 9 Number of faces = 5 Number of edges = 12 Using, Euler's formula, F + V - E = 29 + 5 - 12 = 2 2 = 2 Hence proved.

Question 5.

Can a polyhedron have 8 faces, 26 edges and 16 vertices? **Solution:** Number of faces = 8 Number of vertices = 16 Number of edges = 26 Using Euler's formula F + V - E $\Rightarrow 8 + 16 - 26 \neq -2$ $\Rightarrow -2 \neq 2$ No, a polyhedron cannot have 8 faces, 26 edges and 16 vertices.

Question 6.

Can a polyhedron have: (i) 3 triangles only ? (ii) 4 triangles only ? (iii) a square and four triangles ? **Solution:** (i) No.

- (ii) Yes.
- (iii) Yes.

Question 7.

Using Euler's formula, find the values of x, y, z.

	Faces	Vertices	Edges
(<i>i</i>)	x	15	20
(<i>ii</i>)	6	у	8
(iii)	14	26	Z

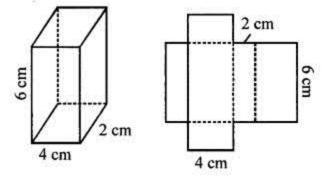
Solution:

(i) F + V - E = 2 $\Rightarrow x + 15 - 20 = 2$ $\Rightarrow x - 5 = 2 \Rightarrow x = 2 + 5 = 7$ (ii) F + V - E = 2 $\Rightarrow 15 + y - 26 = 2$ $\Rightarrow y - 11 = 2$ $\Rightarrow y = 2 + 11 \Rightarrow y = 13$ (iii) F + V - E = 2 $\Rightarrow 14 + 26 - Z = 2$ $\Rightarrow -Z = 2 - 40 \Rightarrow Z = 38$

Question 8.

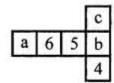
What is the least number of planes that can enclose a solid? What is the name of the solid.

Solution:

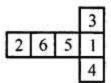

The least number of planes that can enclose a solid is 4. The name of the solid is Tetrahedron.

Question 9.

Is a square prism same as a cube? **Solution:** Yes, a square prism is same as a cube.

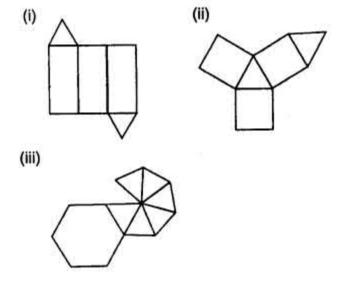

Question 10.

A cubical box is 6 cm x 4 cm x 2 cm. Draw two different nets of it. **Solution:**



Question 11.

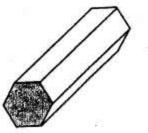
Dice are cubes where the sum of the numbers on the opposite faces is 7. Find the missing numbers a, b and c.

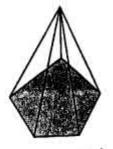


Solution:

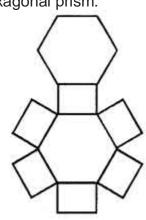
Question 12.

Name the polyhedron that can be made by folding each of the following nets:

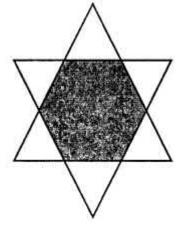



Solution:

- (i) Triangular prism. It has 3 rectangles and 2 triangles.
- (ii) Triangular prism. It has 3 rectangles and 2 triangles.
- (iii) Hexagonal pyramid as it has a hexagonal base and 6 triangles.


Question 13.

Draw nets for the following polyhedrons:



Solution: Net of hexagonal prism:

Net of pentagonal pyramid:

